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Symmetry-breaking on-off intermittency under modulation: Robustness
of supersensitivity, resonance, and information gain
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Nonlinear dynamical systems possessing an invariant subspace in the phase space and chaotic or stochastic
motion within the subspace often display on-off intermittency close to the threshold of stability of the sub-
space. In a class of symmetric systems, the intermittency is symmetry breaking@Ying-Cheng Lai, Phys. Rev.
E 53, R4267 ~1996!#. We report interesting and practically important universal behavior of robustness of
supersensitivity, resonance, and information gain in this class of systems when subjected to a weak modulation.
While intermittent loss of synchronization may be harmful to the application of high-quality synchronization of
coupled chaotic systems, the features reported here may lead to interesting application of on-off intermittency.

PACS number~s!: 05.45.2a, 05.40.2a, 89.70.1c
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I. INTRODUCTION

Nonlinear dynamical systems possessing an invariant
space are of great interest, particularly when the system
tion within the subspace can be chaotic or stochastic.
amples include chaotic systems with symmetry@1,2# or
coupled chaotic systems@3#. Bubbling@4,5# and on-off inter-
mittency @6# are typical behaviors in a system close to
threshold of transverse stability of the subspace due to
fluctuative nature of the local transverse Lyapunov expon
in different part of the subspace. In bubbling, the subspac
stable on average, but local instability can result in la
bursts away from the subspace when it is perturbed.
sensitivity of this weak stability to parameter mismatch a
noise has been studied by Pikovsky and Grassberger@7#.
Intermittent loss of synchronization@5# in experiments with
inevitable noise and parameter mismatch is undesirabl
the application of high-quality synchronization, such as
communication@8#. In on-off intermittency, the subspace
slightly unstable on average, but local transverse attrac
may keep the dynamics very close to the subspace for a
period of time. Great attention has been paid to the dura
of this laminar period that exhibits universal power-law d
tribution in a broad class of systems@6#. Noise in the system
prevents its state from approaching the subspace close
yond the noise level, thus it has important effects on
laminar period distribution@9# or the escape time@10#. In a
noisy environment, bubbling and on-off intermittency are
sentially the same phenomenon.

Sensitivity in nonlinear systems can be very useful
applications such as controlling global dynamics of the s
tem by local tiny perturbations@11#. It is interesting to ask
whether the sensitivity of on-off intermittency may lead
any potential application of the phenomenon. An observa
is that in a class of symmetric systems, on-off intermitten
can be symmetry breaking@1#, namely, the bursting behavio
does not possess the system symmetry when the system
two symmetric but distinct attractors. This paper reports t
a combination of the sensitivity of on-off intermittency an
the symmetry breaking of the bursting can result in rema
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able features in the systems subjected to a weak modula
signal in the noisy environment.

II. MODEL

Let x(t) represent the distance of the dynamics from
invariant subspace, andx(t).0 andx(t),0 denote the dy-
namics in the two symmetric components, respectively.
the symmetry-breaking systems, transitions betweenx.0
andx,0 can only occur whenx(t) comes to the level of the
weak noisy signal. For a system displaying appreciable la
nar state, the main features of the dynamics can be descr
by the general linear equation close to the subspace:

ẋ~ t !5@l1s1j~ t !#x~ t !1s2e~ t !1ps~ t !. ~1!

Herel is the transverse Lyapunov exponent of the subspa
and s1j(t) with ^j(t)&50 is the fluctuation of the loca
Lyapunov exponent due to the chaotic or stochastic mo
within the subspace. In general, chaotic system has qui
decaying correlation, and in a large enough time scalet, j(t)
has an asymptotic Gaussian distribution.e(t) is the additive
white noise with levels2!s1 ands(t) is a weak modulation
signal. The exact form of the signal is unimportant for t
phenomena reported below, provided it varies on a ti
scale slower than the characteristic times of the syste
Here we considers(t) a random binary stream (61 with
probability 0.5! with a bit durationT. p!s1 is the amplitude
of the signal, andR5p/s2 provides a natural measure of th
signal-to-noise ratio.

In Ref. @10#, Cenys and Lustfeld studied the statistic
properties of the escape time of on-off intermittency su
jected to noise by means of Fokker-Planck equation. It
been shown that on-off intermittency is very sensitive
noise@9,10#. We employ the same approach of the Fokk
Planck equation, and focus on the property of amplificat
of the weak external signals(t) in the system. Our results
will demonstrate that the system is also very sensitive to
weak signal, and the amplification of the weak signal is
bust to the additive noise. This sensitivity exhibits reson
behavior as the system parameters change.
1983 ©2000 The American Physical Society
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FIG. 1. ~a! A typical time se-
ries of x(t) in the noisy environ-
ment withs251026: upper panel,
R50, and lower panelR50.5.
The dotted line is s(t). l5
20.02, T52000, ~b! Numerical
estimated^x& as a function ofR
~stars! compared to the analytica
estimation of Eq. ~5! ~line!. l
50, b51, andp51027.
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The Fokker-Planck equation for Eq.~1! is

]W

]t
52

]

]x H F S l1
s1

2

2 D x1ps~ t !GWJ
1

1

2

]2

]x2
@~s1

2x21s2
2!W#. ~2!

In general, it is quite difficult to solve Eq.~2! exactly. LetT0
be the relaxation time of the system afters(t) switching from
11(21) to 21(11). If T@T0, the probability distribution
W(t) can establish an approximate static state during e
bit of the input signal. Under the adiabatic approximationT
@T0 , ]W/]t'0, and the static solution can be obtained a
lytically as

W~x!5CS x21
s2

2

s1
2D (a21)/2

expF2ps~ t !

s1s2
arctan

s1x

s2
G , ~3!

wherea52l/s1
2. For us1x/Au@1 @A5max(p,s2)#,

W~x!'Cuxua21expFpps~ t !

s1s2
sgnxG . ~4!

Now we see that the behavior of the system can be
vided into two regimes. One isuxu@us2e(t)1ps(t)u, where
the dynamics is governed approximately byẋ(t)5@l

1s1j(t)#x(t). Let z5 lnuxu, thenż(t)5l1s1j(t) which de-
scribes a Brownian motion with a constant driftl and diffu-
sion constants1

2/2. The nonlinearity of the system can b
modeled by an effective reflecting boundaries of the Brow
ian motion at6xb , which is of the order ofs1. The prob-
ability density has a power formW(x)5uxua21, but is asym-
metric forx.0 andx,0 in the presence ofs(t). The system
can rarely perform transition betweenx.0 andx,0 in this
regime due to the symmetry-breaking property, until
comes to the other regime, where the noisy inputs2e(t)
1ps(t) dominates the dynamics and the system perfo
transition betweenx.0 andx,0 frequently. The behavio
of the system is determined by the competition between
diffusion and the drift of the Brownian motion. If the drif
time tb5 ln(s1 /A)/ulu is much smaller than the diffusion tim
td52 ln2(s1 /A)/s1

2, the drift is dominant over the diffusion
and the system will either come to a metastable state indu
by the noisy input forl,0, or approach some state awa
from the invariant subspace forl.0. In both cases, the
weak noisy input has no significant effects on the syst
behavior, i.e., the system is insensitive to the modulation.
the other hand, the diffusion is dominant fortb@td , and the
system can have access to both the level of the weak i
ch
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and the boundary of the nonlinearity, exhibiting typical o
off intermittency and sensitivity to the weak modulatio
Variation of the parameterl or s1 affects the competition
between the drift and the diffusion, and the system is
pected to display optimal response to the weak modula
with resonant characterization.

III. ROBUSTNESS OF SUPERSENSITIVITY
TO THE WEAK SIGNAL

Let us consider the diffusion dominant region close to
critical point of the stability of the subspace, e.g.,ulu!1,
ua ln(xb /A)u!1, s1;1, p;102m(m@1). Employing the ap-
proximation in Eq.~4!, and the effective reflecting bound
aries at6xb , the ensemble average^x(t)& is estimated as

^x~ t !&'s~ t !
xb

ln~xb /A!
tanh

pR

s1
, ~5!

which in the noise-free limits2→0, assumes the form

^x~ t !&'s~ t !
xb

ln~xb!2 ln p
. ~6!

A logarithmical dependence of^x(t)& on the input levelp
means an amplification of the weak signalps(t) with an
factor ^x&/p;10m/m(m@1), i.e., the system exhibitssuper-
sensitivityto extremely weak modulation close to the critic
point. This sensitivity was also reported in an overdamp
Kramers oscillator with multiplicative noise free from add
tive noise (s250), which is a specific example in this clas
of systems@12#. In the absence ofs(t), the system produce
symmetric bursting pattern witĥx(t)&50; while the burst-
ing pattern is reorganized to manifest the weak signal afte
is fed into the system~see Fig. 1!. The most interesting and
practically important property is that the weak signal
manifested even buried in a relatively high level of nois
namely, therobustness of the supersensitivity. This behavior
originates from thesymmetry breaking of the on-off intermi
tencyin the system.

To demonstrate the above analysis, we employ the
lowing system in simulations@1#

ÿ52g ẏ14y~12y2!1 f 0 sinvt,

ẋ5~a1by!sin~x!2x1s2e~ t !1ps~ t !, ~7!

where y constitutes the forced Duffing chaotic oscillato
With g50.05, f 052.3, andv53.5, the Duffing system is
chaotic ands1'0.964b. The nonlinearity of the variablex is
related to an experimental model of superconducting qu
tum interference device@13#. However, we should stress tha
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the specific form of the nonlinearity is of no importance f
the phenomena. The transverse Lyapunov exponent of
invariant subspacex50 is l5a21 due to the symmetry o
the Duffing chaotic attractor. Fig. 1 shows typical behav
of the system and good agreement between the analytica
the simulation results for̂x(t)& as a function ofR. The
agreement demonstrates that the general stochastic mod
Eq. ~1! gives good account for this type of system ev
though the motion in the subspace is deterministic chaos

IV. RESONANT BEHAVIOR

It is difficult to perform generally a quantitative analys
of the system response to the weak signal based on the l
dynamics in Eq.~1! as parametersl or s1 changes, becaus
the effective boundaryxb changes with the nonlinearity an
the linear dynamical model with an effective reflectin
boundary is often not sufficient to capture the dynami
property if a is appreciately positive. Moreover, as the p
rameters change, the relaxation timeT0 may become compa
rable to the bit durationT, and the transient behavior play
an important role in the system response and an adiab
approximation is not valid any more. To demonstrate
resonant properties, we rely on simulations with the sys
in Eq. ~7!, while the Brownian motion model can provide
qualitative understanding of the properties, thus showing
the properties are generic and universal for a general clas
the systems.

For a system with on-off intermittent outputx(t), the en-
semble averagêx(t)& and the correlation betweens(t) and
x(t) is relatively small even for the noise-free cases250,
due to the power-law fluctuation ofx(t). To better charac-
terize the response of the system to the modulation, we tr
fer the output seriesx(t) into a binary streamX(t) by a
threshold crossing process: supposex(t) becomes larger than
a prescribed thresholdxth at some moment, after thatX(t)
will keep atX(t)51 until x(t) crosses2xth at another mo-
ment;X(t) will not switch back fromX(t)521 to 11 until
x(t) crossesxth again, and so on. This binary presentati
captures the most important feature of the transition of
bursting pattern between the two symmetric attractors.X(t)
has a strong correlation withs(t) for weak noise cases2
,p if the system is close to the critical point. The exa
value ofxth is not crucial for the properties described belo
In the following, we fixp51027, T52000, andxth51, and
take the cross-correlation functionC betweens(t) andX(t)
estimated using 104 bits of a random stream ofs(t) to dem-
onstrate the resonant behavior in the system.

A. With the change of l

For l rather below the critical pointl50, the system has
a metastable state close to the level of the noisy input,
the diffusion is not strong enough to produce large bu
frequently enough,C will be small. On the opposite, ifl is
rather above the critical point, the drift is also dominant
that the system can seldom access to the level of the w
modulation, and becomes insensitive to the switching ofs(t)
between61, resulting in a smallC again. Close to the criti-
cal point, the system can access to the level of the w
signal and produce large bursts frequently due to str
he
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enough diffusion. The switching of the weak signal
‘‘sensed’’ and manifested by asymmetrical bursting tox
.0 andx,0, giving an optimal value ofC. This process is
illustrated byC as a function ofl in Fig. 2 for variousR
values.

B. With the change of s1

For a smalls1 where the drift is dominant over diffusion
the system is not sensitive to the weak noisy input andC
assumes a small value. With the increase ofs1, the diffusion
becomes stronger, resulting in a smaller relaxation timeT0
and more frequent large bursts, and the system beco
more sensitive to the weak input. In the noise-free cases2
50, the increased sensitivity enablesX(t) to keep closer in
phase to the weak signals(t) andC approaches closer to 1.
if the system continues to work in the symmetry-breaki
regime, and in general a resonant behavior is not expec
The picture becomes quite different ifs2Þ0. With smaller
T0 and increased sensitivity, the system can keep up w
and manifest more and more noise-induced transitions
shorter time scales, and the transition rate ofX(t) between
61 may become much higher than that ofs(t), leading to a
decreasingC. An optimal response is achieved when the d
fusion is strong enough to become sensitive to the w
input but not too strong to manifest a lot of noise-induc
transitions in short time scales. A typical example of t
system response as a function ofs1 is shown in Fig. 3.

FIG. 2. Resonant behavior with respect tol5a21; b51.

FIG. 3. Resonant behavior with respect tob. A resonance occurs
whens2Þ0.
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The above resonant behavior is similar to the conv
tional stochastic resonance where a dynamical system
plays increased sensitivity to a subthreshold signal with
optimal level of additive noise, see Ref.@14# for an extensive
review. Resonance occurs when a noise-controlled time s
in the system matches that of the signal. In our system,
underlying mechanism of the resonant behavior is quite
ferent. The sensitivity to an extremely weak signal is induc
by themultiplicativechaotic or stochastic motion in the su
space. To achieve this sensitivity, it is required that the s
tem is in the on-off intermittency regime so that it can b
come susceptible to the weak signal by coming close eno
to the subspace, and manifest and amplify it by quick eno
large bursts away from the subspace with symmetry bre
ing. As system parametersl and s1 change, a competition
between these two factors leads to the resonant beha
More interestingly, resonant behavior with respect to
change ofs1, the level of the multiplicative chaos~noise!,
necessarily occurs only in the presence of the additive n
due to the nature of this competition. These features are
neric and universal in a general class of systems displa
on-off intermittency with symmetry breaking. Multiplicativ
stochastic resonance has been studied by Gammaitoniet al
@15# in a multiplicatively driven bistable system withl51.
In that case, the system is out of the regime of on-off int
mittency, and consequently cannot display the property
~super!sensitivity, and the resonance with respect to
change ofl was not resported.

V. INFORMATION GAIN

Now consider the system from the viewpoint of transm
sion and amplification of a weak signalps(t) contaminated
with channel noises2e(t) through a system displaying on
off intermittency with symmetry breaking. It is very interes
ing and practically important that more information about t
signal may be obtained from the outputX(t) than from the
noisy input ps(t)1s2e(t) itself, besides the fact that th
weak signal has been amplifyed to a level discernible wit
low-resolution detector. To examine the information ga
we compareC with the correlation between the signalps(t)
and the total noisy input ps(t)1s2e(t), i.e., Cin

5R/A11R2. C, Cin and their difference are shown in Fig
4. C comes to a saturated value forR>1, where the noise-
induced transitions betweenx.0 and x,0 in short time
scales are rarely manifested by large bursts. This value d
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not approach 1.0 asCin due to an average time delay b
tweenX(t) ands(t) induced by the relaxation time, which i
longer for weaker signal. Clearly, appreciable informati
gain is obtained by the system in a broad range ofR, and an
optimal gain is found at a certainR value. If taking into
account the effect of the time delay betweenX(t) ands(t),
e.g., by definingCt as the maximum of the correlation be
tweenX(t) ands(t2t), the information gain region can b
wider ~Fig. 4!.

To conclude, we demonstrate interesting universal f
tures of robustness of supersensitivity, resonance, and in
mation gain in a class of nonlinear systems subjected t
weak modulation. These systems present a new mecha
of resonant behavior compared to conventional stocha
resonance. While intermittent loss of synchronization may
harmful for any applications employing high-quality sy
chronization@5#, the features found in this paper are mea
ingful for potential applications of on-off intermittency. On
off intermittency has been demonstrated in ma
experimental systems and we believe that the behaviors
ported in this paper can be tested in physical experimen
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FIG. 4. An illustration of information gain.l50, b51.
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